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Human Alteration of EstuarineHuman Alteration of Estuarine 
Ecosystems at Global Scales



Long-Term Changes in Estuarine Ecosystems
W t Q lite

• Human impact on coastal ecosystems 
was minimal until Development (colonial 

i d 1800)
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Global Distribution of Hypoxic Systems

• Recent (2008) survey identified > 400 reported systems with hypoxia 
due to eutrophication; expanded to more regions covering  ~250,000 km2.

(Diaz & Rosenberg 2008)

• Hypoxia distribution linked with watershed regions having large human 
“footprint” (i.e., intense human activity and influence). 



(2) Introduction to Chesapeake Bay:(2) Introduction to Chesapeake Bay:
• Physics
• Productivity

W t h d• Watersheds



Key Bay Features

•Large ratio of watershed to 
estuarine area (~15:1)

•Seasonal stratification 

•Broad shallows where light 
reaches sediment

•Relatively long water 
residence time (~ 6 mo)

•Highly productive ecosystem   



Portrait of Early Chesapeake Bay
Pre Colonial (ca 1600) Early Industrial (ca 1900)

• Rich in Animal & Plant Life

• Large Bottom-Dwelling Fish

Pre-Colonial (ca. 1600) Early Industrial (ca. 1900)

g g

• Clear Water & Seagrass

• Mountains of Oyster Shell Attest 
to the once abundant filter-feedingto the once abundant filter-feeding 
reef-forming animals

(T. De Bry in Hariot 1588)



Chesapeake Bay: A Productive Ecosystems
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• Bay’s Primary Production is among highest for aquatic ecosystems• Bay s Primary Production is among highest for aquatic ecosystems 

• Fish Yields ~ 4-times average estuary with same productivity



Chesapeake Bay Watershed Changes: 
Land-Use & Population Trends
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Patuxent Watershed Land-Use Changes

(Costanza et al. 2000)

• Farm Land in 19th C transformed back to Forest thru 1970s• Farm Land in 19th C transformed  back to Forest thru 1970s

• Development transforms Farm Land to Residential & Urban Thru Present 



Chesapeake Bay Watershed
Sources of Nutrients and SedimentsSources of Nutrients and Sediments

Total N LoadTotal N Load Total P LoadTotal P Load Sediment LoadSediment Load

A i lt F t D l dA i lt F t D l dAgriculture                   Forest                 DevelopedAgriculture                   Forest                 Developed

• Nitrogen, Phosphorus & Sediment Loading from Watershed Land-UsesNitrogen, Phosphorus & Sediment Loading from Watershed Land Uses 

• “Agriculture” major source of all 3, “Developed” major source of N & P



River Flow Drives Bay Ecosystem

• Susquehanna River is 
powerful driver carrying 
freshwater & associatedfreshwater & associated 
nutrients, OM, buoyancy

• (shown in flood-stage)
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(3) Nutrient Enrichment Causes Degradation of(3) Nutrient Enrichment Causes Degradation of 
Water Quality & Natural Habitats:
• Loss of Seagrass & Submersed Aquatic Vegetation (SAV)• Loss of Seagrass & Submersed Aquatic Vegetation (SAV)

• Depletion of bottom oxygen (Hypoxia)



Nutrient Enrichment Effects on Coastal Ecosystems
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Dramatic Bay-Wide Decline of Seagrass & SAV
(Submersed Aquatic Vegetation) 

Solomons Island 1933

Solomons Island 1999



Seagrass (SAV) Decline & Partial Recovery 
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Experiments Reveal Role of Nutrient Enrichment
C t l LControl Low High

• Control units had clear 
water and lush SAV growth

• Low-Nutrient units had 
heavy epiphyte growth

• High-Nutrient units, thick 
phytoplankton blooms; 
epiphytes shaded out
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Historical Increase in Volume of Summer Hypoxic 
Water from 1950 to 2003 

• Significant trend shows 
increased volume (4x) of 
severely hypoxic (O2 < 1severely hypoxic (O2 < 1 
mg/L) from 1950-2003

• Within long-term trend, 
hypoxia is greater in high 
flow years (wet = green 
dot) compared to lowdot) compared to low 
flow years (dry = red dot)

Ab t i i• Abrupt increase in 
slope of time trend from 
1950-1980 (blue line) to 
1980-2003 (magenta line)

(After Hagy et al. 2004)

( g )



Stratification Control of HypoxiaStratification Control of Hypoxia
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Hypoxia Trends Related to N-Loading
•Inter-annual variationsInter-annual variations 
blur long-term trends; 
clarify with running means 

•Early summer hypoxiaEarly summer hypoxia 
shows rapid increase 
since 1980 (earlier graph)

Mid

•Mid-summer hypoxia has 
actually declined parallel to 
the decline in N-load

•N-Loading increased until g
mid-1980s, then declined 
gradually into 2000s

•Hypoxia & N-Load highly 

(Murphy et al. 2010)

correlated (r2 = 0.77)



Climate Effects on Mid-Summer Hypoxia: 
North Atlantic Oscillation Index

EarlyEarly

•Winter NAO Index reflects direction of prevailing summer winds

•NAO shift from negative to positive associated with physical conditions 
that inhibit vertical O2 mixing, thereby increasing early summer hypoxia

(Testa 2009)



(4) Ecosystem Recovery & Nutrient Management:(4) Ecosystem Recovery & Nutrient Management:
• Potomac Estuary Case Study 
• Patuxent Estuary Case StudyPatuxent Estuary Case Study



Example Ecosystem Recoveries with Nutrient Management

•Two Bay tributaries (Potomac 
& P t t ) h t i t& Patuxent ) where nutrient 
sources (‘Point’) were reduced

•Potomac—rapid phytoplankton 
decline w/ reduced P inputdecline w/ reduced P input

•Potomac—Improved DO & 
Secchi in 10 yrs; SAV in 20 yrs

•Patuxent—Water quality 
declined w/ N-load increase; 

•Patuxent—Phytoplankton and 
Secchi decreased with N-load 
reduction, but DO and SAV 
recovery were delayed

(Kemp et al. 2005)



(5) Fisheries Population Declines (& Recoveries)(5) Fisheries Population Declines (& Recoveries)
• Atlantic Menhaden
• Atlantic SturgeonAtlantic Sturgeon
• Eastern Oyster
• Striped Bass
• Blue Crab• Blue Crab



Chesapeake Bay Fisheries in Decline
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Atlantic Menhaden: Abundant Forage Species

Prime food for striped bass and 
many other valuable fish, but 

i j d li Menhaden schools are spotted by airplanesare now in a major decline Menhaden schools are spotted by airplanes, 
caught in large purse seines for oil & pet-food, 

and removed from Bay food-web

Fishing pressure increases with modern fleet, 
& overfishing threatens fish populations

Menhaden filter algae from water 
for food, thereby cleaning

eutrophic waters of excess algae



Chesapeake Bay’s Oyster Harvest
• Symbol of Estuary’s Bounty
• Pride of the Regional Culture



History of Maryland Oyster Harvest
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Atlantic Sturgeon: A Highly Vulnerable Species

• Last harvested female from Potomac River estuary in 1970
• Vulnerability: Long-lived, slow growing, easily captured, habitat sensitive (hypoxia)
• Restoration potential: readily reared in captivity 



Blue Crab: Chesapeake Bay Landings

Even the feisty Blue Crab
has been in a major decline

(National Geographic, George Crall)



Atlantic Striped Bass Landings: 1945 to 2005
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(6) Restoring Bay Ecosystem by Exploiting(6) Restoring Bay Ecosystem by Exploiting 
Nature’s Self-Regulating Processes:
• Oxygen control on nutrient recycle• Oxygen control on nutrient recycle
• Oyster Reef plankton filtration
• Tidal Marsh nutrient sequestering

SAV B d ti l d t i t t i• SAV Bed particle and nutrient trapping



Positive Feedback: SAV Beds Clear Water & 
Enhance SAV Plant Growth

• Suspended particles control water 
clarity in much of the Bay

Wi d i f b tt di t

Wind Velocity

• Wind resuspension of bottom sediment 
is largest TSS source in shallow Bay

• TSS levels are reduced (by 5-50 x) in 

(Ward et al. 1984)

Bed Effect

Total Suspended Solids

SAV because of bed friction effectsBed Effect
on TSS

• Resuspension of bottom sediments 
declines with increasing SAV biomass

• Thus, plant beds strongly reduce

Bed Effect on Resuspension

Log Y ~ -0.01 X + 7 Thus, plant beds strongly reduce 
levels of TSS and associated turbidity

• Healthy SAV beds with denser plant 
bi t d t h l l i

Lower TrapUpper Trap

Log Y  0.01 X  7
(r2 =0.85)

biomass tend to have clearer overlying 
water and higher photosynthetic rates

(Ward et al. 1984)



SAV Beds Remove Nitrogen from Bay Water
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Positive Feedback: Hypoxia Increases Nutrient 
Recycling and Algae Production 

• Benthic nutrient (PO4
& NH ) recycling

y g g
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Conceptual Model of O2 Controls on N-Cycling
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Negative Feedback: Bivalves (e.g., Oysters) 
Control Phytoplankton
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Positive Feedback: Watershed Soil Erosion 
Feeds Marsh Growth & Maintenance

•Tidal marshes are 
i t t f t f B

Feeds Marsh Growth & Maintenance

important features of Bay 
watershed 

•Marsh area expanded 
since colonial times due tosince colonial times due to 
increased soil erosion 
from watershed

•Marshes have served as•Marshes have served as 
buffers filtering nutrient 
inputs from watershed

•Marsh area is declining•Marsh area is declining 
due to sea level rise and 
reduced soil erosion

•Marsh restoration would
1903~1600 1949Marsh restoration would 

help re-establish lost 
filtration capacity



Negative Feedback: Tidal Marshes act as 
Filter that Removes Nitrogen from Bay

(Flows: kg N day-1)Watershed Input
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(7) Direct Restoration of Vegetated Habitats:(7) Direct Restoration of Vegetated Habitats:
• Sediment addition to Tidal Marshes
• Transplanting and seeding SAV bedsTransplanting and seeding SAV beds



Trend of Marsh-Loss at Blackwater NWR
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Sea Level Rise in Chesapeake Bay Region
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• During last 100 years SLR has been steady at ~ 3 mm/yrg y y y

• During next 100 years SLR is predicted to increase to ~6-20 mm/yr

(Stevenson, unpublished)



Can Declining Marshes at Blackwater NWR be 
Enhanced using Local Dredged Materials?g g

(Cahoun & Cowan)(Cahoun & Cowan)

Court Stevenson

Marsh at Blackwater Wildlife Refuge 
one year after thin-layer application 

Court Stevenson 

Thin-layer spraying of dredged 
materials on marshes has been y y pp

of sandy dredged materials.  
materials on marshes has been 
used in Louisianna for >20 yrs.



Can Dredge Spoils be Used to Re-create Tidal Marsh Islands?

Poplar Island – July 2006

(Photo: Jane Thomas)( )



Can Transplanting & Seeding Enhance SAV 
Recovery in Mid-salinity Region of Bay?

• Slow & variable increase in 
SAV cover in mesohaline

Recovery in Mid-salinity Region of Bay?

SAV cover in mesohaline 
since 1980, but still well 
below goals.

• Most of SAV in mesohaline 
is mono-specific stands of 
Ruppia maritima.

• R. maritima is a less stable 
SAV species, with limited 
habitat value.

• Will it work as a “Nursery 
Bed” for restoration of more 
stable SAV species?

(www.vims.edu)
p



SAV Transplanting & Seeding for Restoration 

•Transplanting is labor-
intensive & costlyintensive & costly.

• Seed viability is low for 
most SAV species in region.

• Overwintering buds & 
tubers are best propagules 
for effective field application.for effective field application.

• How did these efforts work?



Positive Feedback: SAV/Seagrass Beds 
Trap Particles and Clear Water

• Large healthy SAV 
b d i Ch t kbed in Choptank

• “Dataflow” mapping 
of water quality at o a e qua y a
fine-scale around bed

• Water clarity higher 
(turbidity lower) within(turbidity lower) within 
SAV bed

• More light for plant SAV bedSAV bed g p
growth within bed 

Dataflow SystemDataflow System

(Gruber 2009)



Transplanted P. perfoliatus Growth in R. 
maritima Beds of Various Size & Densitymaritima Beds of Various Size & Density
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Self-Propagation of Potamogeton Transplants
Small transplants of stable native SAV species• Small transplants of stable native SAV species

• “Nurse-Beds” less stable R. maritima beds
• Yielded long-term survival & natural expansion
• Restring high quality SAV habitat.g g y
• In 1-3 years satellite colonies increased area 
cover of transplanted species by 10-fold

~300 m

(Murray et al. 2005)



(8) Synthesis and Conclusions(8) Synthesis and Conclusions



Integrated Ecosystem Management & Restoration
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Trajectories of Response to Nutrient Loading
(a)(a)(a)Linear Response

• Theory suggests alternative ecosystem 
response to changes in environmental 
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Summary of 
Nutrient-Related  
Feedbacks in BayFeedbacks in Bay 
Ecosystem

•Positive & negative feedbacks 
control  paths of ecosystem 
change with Bay degradation

• Among other mechanisms, N & 
P inputs affect hypoxia & light

• Hypoxia leads to more nutrients, 
more algae, & more hypoxia

• Turbidity leads to less SAV 
causing more turbidity, less SAV

• Oysters & marshes tend to 
reinforce  these feedbacks

(Kemp et al. 2005)

•Processes reverse w/ restoration, 
thus reinforcing trends



Concluding Comments
• Human degradation of estuarine coastal ecosystems is globalHuman degradation of estuarine coastal ecosystems is global

-Need to learn from many documented examples
-Need to fit restoration option to nature of problem

• Eutrophication is manifest in many forms but two stand out• Eutrophication is manifest in many forms but two stand out
-Decline of seagrass/SAV 
-Depletion of bottom water oxygen

Fi h i l ti d li f di i• Fisheries population declines for diverse species
-Disease & habitat-loss complicate
-Harvest control can allow recovery

• Restoration by exploiting nature’s Self-Regulating Feedbacks
-Positive feedbacks
-Negative feedbacks

• Direct (active) restoration of vegetated habitats

• Synthesis and conclusions
- Integrated managementIntegrated management
- Nature’s self-regulation & recovery trajectories



Th k Y !Thank You!
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Upper Patuxent SAV Re-Invasion

• Re-Invasion started in 
shallow waters

• SAV trapped 
suspended sediments

• Near-shore water 
becoming clearer

• Likely a THRESHOLD 
response to N loadresponse to N load 
reduction



Total nitrogen inputs, transport, stocks and 
losses in the Patuxent estuaryoss s n th  atu nt stuary
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Marsh Creation Plan for Poplar Island

(Stevenson, 
unpublished)



Poplar Is. Tidal Marsh Biomass after 2 years
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biomass was only 10-15% of 
aboveground plant material
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• This appears to be due to the 
use of eutrophic nutrient-rich 
dredge sediments
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Tidal Marshes Need Sediments to Keep Up with SLR

( Stevenson et al. 1986)  



IPCC Estimates Global Sea-Level Rise (20 – 60 cm) by 2100

We are entering a new period where rates of SLR are beginning to increase with 
global warming. Where will tidal marshes get sediments needed to keep pace?

(Stevenson, unpublished)



Winter NAO Index: Longer Time-Series

• Longer term trends in Winter NAO index shows variations and periodic (~10-30 yr) 
shifts between positive and negative phases.
• Last major shift coincides with Bay “regime shift” in hypoxia per N-loading
• Index in recent years suggests a shift back down to negative phase (& possible• Index in recent years suggests a shift back down to negative phase (& possible 
increase in vertical mixing and weakening of stratification). 



Self-Propagation of Potamogeton Transplants  
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P. perfoliatus S. pectinata

Within 4 years restored 
area had increased by a 
5-10 fold (minimum)



Dredge Spoil Spray Effects on Blackwater NWR

Marsh plant biomass initially 
enhanced in sprayed region of 
Blackwater NWR.

Within two years patches y p
of plant die-off appeared 
in treated marshes. 

(Stevenson, unpublished)



Point-Source Nutrient Loading to Upper Patuxent
OMIT?

• P removal (phosphate ban from 
detergents) in 1986

• N removal (BNR) seasonally 
reduced N inputs in 1992

• Sewage flow increases with• Sewage flow increases with 
human populations


